124 research outputs found

    A Free Industry-grade Education Tool for Bulk Power System Reliability Assessment

    Full text link
    A free industry-grade education tool is developed for bulk-power-system reliability assessment. The software architecture is illustrated using a high-level flowchart. Three main algorithms of this tool, i.e., sequential Monte Carlo simulation, unit preventive maintenance schedule, and optimal-power-flow-based load shedding, are introduced. The input and output formats are described in detail, including the roles of different data cards and results categorization. Finally, an example case study is conducted on a five-area system to demonstrate the effectiveness and efficiency of this tool.Comment: This paper was submitted to a conferenc

    Reserves from Controllable Swimming Pool Pumps: Reliability Assessment and Operational Planning

    Get PDF
    This paper introduces a conceptual framework, a capacity assessment method, and a data-driven optimization algorithm to aggregate flexible loads such as in-ground swimming pool pumps for reliable provision of spinning reserves. Enabled by Internet of Things (IoT) technologies, many household loads offer tremendous opportunities for aggregated demand response at wholesale level markets. The spinning reserve market is one that fits well in the context of swimming pool pumps in many regions of the U.S. and around the world (e.g. Texas, California, Florida). This paper offers rigorous treatment of the collective reliability of many pool pumps as firm generation capacity. Based on the reliability assessment, an optimal scheduling of pool pumps is formulated and solved using scenario-based approach. The case study is performed using empirical data from Electric Reliability Council of Texas (ERCOT). Cost-benefit analysis based on a city suggests the potential business viability of the proposed framework

    Integrating Research Results into a Power Engineering Curriculum

    Get PDF
    This paper presents summaries of the activities of six research active power engineering educators which were presented in a panel session of the same name at the IEEE Power Engineering Society Winter Meeting on February 3, 1997 in New York City, USA. Each of the panelists discusses how research results are incorporated into courses and how students benefit from this approach

    Advanced fault diagnosis techniques and their role in preventing cascading blackouts

    Get PDF
    This dissertation studied new transmission line fault diagnosis approaches using new technologies and proposed a scheme to apply those techniques in preventing and mitigating cascading blackouts. The new fault diagnosis approaches are based on two time-domain techniques: neural network based, and synchronized sampling based. For a neural network based fault diagnosis approach, a specially designed fuzzy Adaptive Resonance Theory (ART) neural network algorithm was used. Several ap- plication issues were solved by coordinating multiple neural networks and improving the feature extraction method. A new boundary protection scheme was designed by using a wavelet transform and fuzzy ART neural network. By extracting the fault gen- erated high frequency signal, the new scheme can solve the difficulty of the traditional method to differentiate the internal faults from the external using one end transmis- sion line data only. The fault diagnosis based on synchronized sampling utilizes the Global Positioning System of satellites to synchronize data samples from the two ends of the transmission line. The effort has been made to extend the fault location scheme to a complete fault detection, classification and location scheme. Without an extra data requirement, the new approach enhances the functions of fault diagnosis and improves the performance. Two fault diagnosis techniques using neural network and synchronized sampling are combined as an integrated real time fault analysis tool to be used as a reference of traditional protective relay. They work with an event analysis tool based on event tree analysis (ETA) in a proposed local relay monitoring tool. An interactive monitoring and control scheme for preventing and mitigating cascading blackouts is proposed. The local relay monitoring tool was coordinated with the system-wide monitoring and control tool to enable a better understanding of the system disturbances. Case studies were presented to demonstrate the proposed scheme. An improved simulation software using MATLAB and EMTP/ATP was devel- oped to study the proposed fault diagnosis techniques. Comprehensive performance studies were implemented and the test results validated the enhanced performance of the proposed approaches over the traditional fault diagnosis performed by the transmission line distance relay

    Collusion-resistant fingerprinting for multimedia in a broadcast channel environment

    Get PDF
    Digital fingerprinting is a method by which a copyright owner can uniquely embed a buyer-dependent, inconspicuous serial number (representing the fingerprint) into every copy of digital data that is legally sold. The buyer of a legal copy is then deterred from distributing further copies, because the unique fingerprint can be used to trace back the origin of the piracy. The major challenge in fingerprinting is collusion, an attack in which a coalition of pirates compare several of their uniquely fingerprinted copies for the purpose of detecting and removing the fingerprints. The objectives of this work are two-fold. First, we investigate the need for robustness against large coalitions of pirates by introducing the concept of a malicious distributor that has been overlooked in prior work. A novel fingerprinting code that has superior codeword length in comparison to existing work under this novel malicious distributor scenario is developed. In addition, ideas presented in the proposed fingerprinting design can easily be applied to existing fingerprinting schemes, making them more robust to collusion attacks. Second, a new framework termed Joint Source Fingerprinting that integrates the processes of watermarking and codebook design is introduced. The need for this new paradigm is motivated by the fact that existing fingerprinting methods result in a perceptually undistorted multimedia after collusion is applied. In contrast, the new paradigm equates the process of collusion amongst a coalition of pirates, to degrading the perceptual characteristics, and hence commercial value of the multimedia in question. Thus by enforcing that the process of collusion diminishes the commercial value of the content, the pirates are deterred from attacking the fingerprints. A fingerprinting algorithm for video as well as an efficient means of broadcasting or distributing fingerprinted video is also presented. Simulation results are provided to verify our theoretical and empirical observations
    corecore